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Figure 1. Implementing a novel vision task egoPPG, EgoPulseFormer tracks a person’s heart rate (HR) from eye-tracking videos captured
by unmodified egocentric vision headsets. Our method estimates the person’s photoplethysmogram (PPG) of the blood volume pulse from
areas around the eyes to extract HR values. For training and validation, we collected egoPPG-DB, a dataset of participants’ eye-tracking
videos during everyday activities with synchronized ground-truth PPG signals (white contact sensor) and HR values (ECG chest strap).

Abstract

Egocentric vision systems aim to understand the spatial sur-
roundings and the wearer’s behavior inside it, including
motions, activities, and interaction with objects. Since a
person’s attention and situational responses are influenced
by their physiological state, egocentric systems must also
detect this state for better context awareness. In this pa-
per, we propose egoPPG, a novel task for egocentric vision
systems to extract a person’s heart rate (HR) as a key indi-
cator of the wearer’s physiological state from the system’s
built-in sensors (e.g., eye tracking videos). We then propose
EgoPulseFormer, a method that solely takes eye-tracking
video as input to estimate a person’s photoplethysmogram
(PPG) from areas around the eyes to track HR values—
without requiring additional or dedicated hardware. We
demonstrate the downstream benefit of EgoPulseFormer on
EgoExo4D, where we find that augmenting existing mod-
els with tracked HR values improves proficiency estimation
by 14%. To train and validate EgoPulseFormer, we col-

lected a dataset of 13+ hours of eye-tracking videos from
Project Aria and contact-based blood volume pulse signals
as well as an electrocardiogram (ECG) for ground-truth
HR values. 25 participants performed diverse everyday
activities such as office work, cooking, dancing, and exer-
cising, which induced significant natural motion and HR
variation (44–164 bpm). Our model robustly estimates HR
(MAE=8.82 bpm) and captures patterns (r=0.81). Our re-
sults show how egocentric systems may unify environmen-
tal and physiological tracking to better understand user ac-
tions and internal states.

1. Introduction
Egocentric vision systems, such as Mixed Reality (MR)
glasses by Meta [56], Magic Leap [46], and others have
emerged as powerful devices for capturing and analyzing
a person’s behavior as well as their surrounding environ-
ment from a first-person perspective. The wider availabil-
ity of promising wearable capture platforms (e.g., Project



Aria glasses [23]) has sparked a large amount of research
on egocentric vision tasks for environment understanding
and navigation, including localization [41, 71, 74], and si-
multaneous localization and mapping (SLAM) [17, 38, 68].
Since egocentric systems can simultaneously capture parts
of the wearer’s behavior, many efforts have investigated
egocentric action recognition [44, 52, 86, 89, 94] and hand-
object interaction [22, 32, 73, 95] to understand user behav-
ior. Large-scale datasets have also been introduced in recent
years to accelerate data-driven research in this domain, such
as Ego4D [32], Nymeria [51], and EgoExo4D [33], offering
rich, multimodal data to enable training and evaluation for
these tasks.

In addition to spatial awareness, understanding the user’s
behavior, their attention, and intent is equally important for
egocentric systems [3, 58, 88]. For instance, anticipating the
user’s next action is crucial for applications in navigation,
personalized feedback, and autonomous assistance [20, 84,
91]. Objects of interest are commonly estimated from an-
alyzed gaze patterns [27, 37, 45, 47] to support behavioral
analysis and social understanding [26, 32, 33, 40].

However, holistically modeling a person’s behavior and
intent requires knowledge of their physiological state,
which influences cognitive performance, attention, and sit-
uational responses [15, 25, 53, 76, 81]. Key compo-
nents of physiological state include cardiovascular indi-
cators such as heart rate (HR) and electrodermal activ-
ity [1, 9, 59, 79], which reflect emotions, stress, fatigue,
and alertness [1, 11, 59, 65, 79]. Capturing these dynam-
ics can thus benefit models of human behavior to enable a
richer understanding of user actions for adaptive systems.

In this paper, we introduce egoPPG, a novel task for ego-
centric vision systems to accurately extract a person’s HR
measurements from the system’s built-in sensors, specifi-
cally the eye-tracking cameras in unmodified headsets. We
then propose EgoPulseFormer, a novel method that im-
plements egoPPG on Project Aria glasses to demonstrate
the benefit of egoPPG for existing downstream vision tasks
on large egocentric datasets. Our learning-based method
EgoPulseFormer is designed to recover the person’s photo-
plethysmogram (PPG) from the subtle fluctuations in skin
intensity due to light absorption in pulsatile arteries beneath
the skin surface following a blood volume pulse (BVP),
in particular deriving it from regions around the wearer’s
eye for robust tracking. Leveraging the infrared (IR) il-
luminant of the eye tracker, it work across light condi-
tions [50]. In addition, we demonstrate the benefits of esti-
mated HR values in egocentric recordings for a key vision
task downstream: We augment an existing architecture with
EgoPulseFormer and show its impact on EgoExo4D’s pro-
ficiency estimation benchmark, whose accuracy improves
by 14.1% with EgoPulseFormer’s HR estimates.

The sensing configuration of our task can be considered

a hybrid between typical contact-based BVP sensors (e.g.,
those in smartwatches [5, 13, 21, 31, 61, 63]) and rPPG
methods that aim to extract HR from a person’s face using
a camera [39, 66, 82]. While egocentric glasses are body-
worn much like wrist watches, they couple more loosely to
the body and are subject to considerable motion artifacts.
Unlike contact sensors, eye trackers observe the wearer’s
eye regions from a short distance and capture eye motions
and blinks, leading to ambiguity and noise for capturing
fluctuations in skin intensity. Unlike rPPG configurations,
egocentric capture systems move with the wearer’s body
and head, and eye trackers use controlled illumination.

Therefore, we designed EgoPulseFormer to extract BVP
from the region with the least motion—around the wearer’s
eyes—by incorporating spatial attention within our model’s
backbone. We validate EgoPulseFormer’s efficacy on a
novel dataset that we collected to capture some of the ac-
tivities included in large-scale egocentric datasets alongside
physiological reference recordings. Our dataset egoPPG-
DB contains 13 hours of recordings from 25 participants,
who wore Project Aria glasses and performed five real-
world tasks with varying motion and intensity, causing their
HR values to reach levels between 44–164 bpm.

We summarize our key contributions as follows:
1. egoPPG as a novel task and EgoPulseFormer as an HR

estimation method for egocentric systems that operates
on eye-tracking videos. Our method robustly predicts
continuous HR across a series of activities and interac-
tions (MAE=8.82 bpm), with a 27% lower error than cur-
rent state-of-the-art rPPG models [12, 48, 90, 92].

2. egoPPG-DB, a dataset of eye-tracking videos and syn-
chronized BVP (contact-based) and ECG recordings
(chest strap-based) to verify all physiological signals.
We captured these across diverse everyday activities that
were inspired by those included in existing large-scale
egocentric datasets [32, 33, 51].

3. a validation of egoPPG’s downstream benefits for pro-
ficiency estimation. Augmenting EgoExo4D with con-
tinuous HR values and additionally feeding them into
an existing architecture, we demonstrate the implications
of our method on the proficiency estimation benchmark
with an increase in accuracy by 14.1%.

2. Related work
Egocentric vision. In recent years, research in egocentric
vision has surged, driven by advances in AR/VR glasses [4,
23, 36, 46, 56, 57], which provide new ways for understand-
ing user interaction from a first-person perspective. Much
of this work has focused on tasks such as action recogni-
tion [44, 52, 86, 89, 94] and anticipation [16, 30, 60, 86],
full-body pose estimation [75, 87], responding to user needs
[67, 69, 91], and social behavior analysis [26, 32, 40]. Ad-



ditionally, tracking vital signs in AR/VR settings and for
affective computing applications [1, 11, 59, 65, 79] has be-
come an important tool for understanding users’ physiolog-
ical states [54], further aiding in understanding users’ be-
havior, their attention, and intent [3, 58, 88].
Physiological measurements. Wearable sensors have had a
tremendous impact on health monitoring in recent years, en-
abling continuous measurement of key physiological met-
rics, such as heart rate (HR), oxygen saturation, and activity
levels [13, 21, 62, 63]. Heart rate (HR), in particular, is a
key measure for assessing an individual’s health and per-
formance [24, 29, 42, 72]. While wearable sensors, such
as wrist-worn smartwatches, provide accurate HR measure-
ments and also challenging scenarios (e.g., exercising), they
are intrusive and can cause discomfort [43]. Recent research
has, thus, extensively explored using cameras as an unobtru-
sive, non-contact alternative for measuring HR, generally
called remote photoplethysmography (rPPG) [39, 66, 82].
rPPG measures HR based on subtle color changes in the
skin caused by the BVP. Generally, rPPG methods can
be broadly divided into traditional signal processing tech-
niques [8, 18, 19, 39, 66, 82, 83] and deep learning-based
approaches [10, 12, 48, 90, 92]. So far, rPPG has been
mostly applied to facial videos with the camera and user be-
ing stationary, such as while sitting in front of a laptop, as
it requires a continuous video feed of the same skin region.
This limitation is shown in current rPPG datasets, which
primarily capture individuals in seated positions with either
a stationary camera directed at their face [7, 34, 64, 70, 78]
or requiring users to hold a smartphone steadily in front of
their face [80]. As a result, rPPG is not feasible to be de-
ployed in more dynamic settings, such as during exercise.
Eye tracking cameras. Eye tracking in egocentric vision
systems is mostly done using inward-facing cameras direct
at the eyes [2]. Even during motion, eye tracking in VR de-
vices demonstrated accurate performance showcasing that
the cameras remain almost stationary relative to the user’s
eyes [14]. Furthermore, IR illumination makes them ro-
bust to lighting variations and low-light conditions [50]. To
the best of our knowledge, videos from eye tracking cam-
eras have not yet been explored for HR estimation using the
BVP despite their promise to enable unobtrusive HR mea-
surements during everyday life.

3. Overview
Our aim is to enable egocentric vision systems i) to track
a person’s physiological state via continuously estimated
HR and ii) to integrate these HR estimates into down-
stream tasks that benefit from knowledge of the user’s
state. Sec. 4 first describes our dataset of synchronized eye-
tracking videos and ground-truth HR measurements during
a series of everyday activities. Sec. 5 then outlines our
method EgoPulseFormer that continuously estimates a per-

son’s BVP from eye-tracking videos and derives HR val-
ues from it. Fig. 3 illustrates our approach. To demon-
strate EgoPulseFormer’s benefit for downstream applica-
tions, we leverage HR estimation for the user proficiency
benchmark of the EgoExo4D dataset, described in Sec. 6.
Finally, Sec. 7 provides all results from our evaluations and
Sec. 8 discusses our findings.

4. egoPPG-DB

The egoPPG-DB dataset was developed to support HR es-
timation from eye-tracking videos under real-world condi-
tions, with a protocol designed to elicit significant motion
and fluctuations in HR. By including diverse everyday ac-
tivities, we provide a challenging benchmark for egocentric
HR estimation models.

4.1. Recruiting and recording

We recruited N = 25 participants (12 female, 13 male, ages
19–32, µ = 25.1 and σ = 3.3) on a voluntary basis, re-
sulting in over 13 hours of video recordings. Based on the
Fitzpatrick scale [28], 9 participants had skin type II, 10
had skin type III, 2 had skin type IV, and 4 had skin type
V. All participants signed a consent form before the data
collection, agreeing with using and sharing their data for
academic and non-commercial purposes. Participants were
instructed to avoid wearing makeup prior to the recording.
The data collection was approved by the anonymized Ethics
Commission (no. #anonymized). In terms of dataset size
by duration, egoPPG-DB is third amongst the longest rPPG
datasets [7, 34, 64, 70, 78, 80] as listed in Tab. 6.

4.2. Apparatus

Fig. 2 illustrates our experimental setup. We used Project
Aria glasses [23] with Profile 21 to record eye tracking
videos at 30 fps with a resolution of 320 × 240 pixels
per eye. To capture ground truth PPG measurements, with
which we train our model, we developed a custom sen-
sor that records PPG data offline at 128 Hz. The sen-
sor consists of a main board, mounted on the left side of
the frame, featuring a DA14695 system-on-chip interfacing
with a MAX86141ENP+ PPG sensor. The LEDs and pho-
todiodes used by the PPG sensor are embedded in the left
nose pad and connected to the main board using a flat flex-
ible cable. For each participant, we individually adjusted
the nose pad position to ensure the sensor aligned with their
left angular artery [35]. To validate our custom PPG sensor,
we also recorded gold-standard ECG data using a movisens
ECGMove 4 chest belt sampling at 1024 Hz. We synchro-
nized all devices at the start and end of each recording with
a synchronization pattern, using their built-in IMUs.
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Figure 2. Apparatus used to record the egoPPG-DB dataset.

4.3. Capture protocol

The average duration of the recording of participant was
32 minutes. The capture protocol comprised 5 activities
(Tab. 1): watching a video, office work, kitchen work, danc-
ing, and exercising on an indoor bike (Fig. 1). We included
these activities for three purposes: (1) Incorporate every-
day activities including the corresponding HR changes and
motion artifacts; (2) cover a wide range of HR values (low
HR when watching a video vs. high HR when exercis-
ing), and (3) resemble activities that were captured in large-
scale egocentric vision datasets, such as EgoExo4D [33] or
Nymeria [51]. In Tab. 8, we give a detailed description of
each activity, and in Tab. 3 we show the mean HR values for
each activity. Exercising on the bike produced the highest
HR values (113 bpm), whereas watching the video resulted
in the lowest mean HR (71 bpm).

4.4. Dataset and signal quality verification

To evaluate that the contact PPG sensor, whose signal we
later use as the target for model training, produces accurate
HR values, we evaluate it against the gold-standard ECG.
We assessed the performance by calculating the MAE and
Pearson correlation between HR estimates from the ECG
and PPG signals for each participant using a 30-second
sliding window. For activity labeling, we manually anno-
tated the start and end times of each task (see Tab. 1) for
each participant using the Point of View (POV) RGB videos
recorded by the Project Aria glasses. To ensure that the sig-
nal quality of the contact PPG is sufficient for model train-
ing, we excluded all tasks with an MAE over 3.0 bpm be-
tween the PPG and ECG, which can happen when the PPG
sensor occasionally loses alignment with the angular artery
due to movement. This applied to 20 of 150 tasks (13%, see
Tab. 7). During the remaining tasks, our custom-built PPG
nose sensor achieved very high accuracy, with an average

activity actions minutes

Watch video Watch a documentary 5

Office work
Work on a computer 4
Write on a paper 2
Talk to the experimenter 2

Walking Walk to the kitchen 1

Kitchen work
Cut vegetables

5Prepare a sandwich
Wash the dishes

Walking Walk to the dancing room 1.5
Dancing Follow random dance video 5
Exercise bike Ride an exercise bike 5
Walking Walk back to the start 1.5

Table 1. Capture protocol for recording the egoPPG-DB dataset.

MAE of 1.3 bpm and a mean correlation of 0.94 compared
to the ECG signal, showing its suitability as ground truth.

5. EgoPulseFormer: a first method for egoPPG
5.1. Problem definition
Our objective is to estimate BVP and HR from periodic
changes in pixel intensity in eye-tracking video frames
F ∈ Rw×h. Physically, this means extracting a physio-
logical signals from the information in the light reflected by
the arteries and arterioles that carry blood beneath the skin.
This light reflection can be modeled as a combination of
diffuse and specular reflections. Wang et al. [83] model the
reflected light intensity C(t) as:

C(t) = I(t)(vs(t) + vd(t)) + vn(t) (1)

where I(t) is the luminance intensity, vs(t) the specular re-
flection, vd(t) the diffuse reflection, and vn(t) the sensor
noise. While the specular reflection vs(t) lacks pulsatile
information, the diffuse reflection vd(t) contains informa-
tion about the absorption and scattering of the light in skin
tissue[83]. Thus, vd(t) can be further decomposed as:

vd(t) = udd0 + upp(t) (2)

where ud is the unit color vector of the skin, d0 the station-
ary reflection strength, up the relative absorption, and p(t)
the signals of interest. p(t) is in our case the BVP, which
our model aims to learn from the camera recordings.

5.2. Deep learning model
Our architecture is built upon a 3D CNN backbone [92] with
a temporal input length of T = 128 frames (corresponding
to 4.3 seconds) downsampled to (h = 48) × (w = 128)
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Figure 3. Architecture of our model for continuous BVP estimation from eye-tracking videos and consecutive HR computation.

pixels, resulting in an input of dimensions (T,C,w, h).
The channel is C = 1 in our case, as our input is from
monochrome videos. Compared to the video of a person’s
face, which is usually used for rPPG tasks, eye tracking
videos offer additional challenges. While the bulbar con-
junctiva (white of the eyes) contains many blood vessels
from which the BVP could theoretically be estimated, eyes
typically move strongly during everyday situations and are
closed while blinking (see participant 2 in Fig. 4). Con-
sequently, extracting the BVP from the eye regions would
introduce substantial motion artifacts and reduce the signal-
to-noise ratio (SNR). In contrast, when qualitatively ana-
lyzing eye tracking images, we see that the skin around the
eyes exhibits considerably less motion than the eyes them-
selves and could thus provide a more stable source of BVP
information. To address this, we introduce spatial atten-
tion modules [85] before each pooling (see Fig. 3) to al-
low our network to focus on high-SNR regions, such as the
skin, and reduce the influence of low-SNR regions with fre-
quent motion, like the eyes. Given an input feature map
F ∈ RT×C×w×h, the spatial attention modules infers a
spatial attention map Ms ∈ RT×1×w×h as:

Ms(F ) = σ ∗ (f7×7([Favg;Fmax])) (3)

where σ is the sigmoid function, f7×7 a 7 × 7 convo-
lution operation and Favg ∈ RT×1×w×h and Fmax ∈
RT×1×w×h are the average-pooled and max-pooled feature
maps respectively. The final output Fout of the attention
process is then:

Fout = Ms ⊗ F, (4)

Furthermore, individual variations in the fit of the glasses
result in different parts of the skin around the eyes being
visible. For some individuals, the eye tracking cameras cap-
ture only the areas above the eyes, for others, only below,
and in some cases, the glasses sit at an incline (see Fig. 4).
To account for such variations, we apply three targeted data

augmentations during training that reflect these specific dif-
ferences in camera angles and coverage: (1) random rota-
tion between -20 and +20 degrees to account for slight in-
clinations in the glasses’ positioning; (2) random horizontal
cropping to help the network distinguish between high and
low SNR regions across various skin areas and camera po-
sitions; and (3) horizontal and vertical flipping to further
increase robustness to individual differences in skin region
visibility. Finally, to help the network focus on the changes
between the frames caused by the periodic BVP, we use the
standardized consecutive frame differences of the eye track-
ing videos as input into our network. We standardize each
frame by subtracting the mean pixel intensity and dividing it
by the standard deviation of the pixel intensities values [12].
We use the standardized consecutive differences of the PPG
signals from the nose as the labels for our model. Fig. 3
shows our architecture with the input preprocessing demon-
strated on the left side, and an example learned spatial atten-
tion map on the right side. For one batch, the total number
of FLOPS for our model is about 164 GigaFLOPS. The to-
tal number of parameters is about 770k, where the spatial
attention modules added only 400 parameters.

5.3. Experiments setup
5.3.1. Training
We trained all implemented models using five-fold cross-
validation split by participants to ensure a strict separation
between training, validation, and test sets. We iteratively
held out the data from five participants (20%) as the test set,
two as validation, and used the remaining participants as the
training set. The training was conducted with a batch size
of 4 for 100 epochs, a learning rate of 0.0009, and mean
squared error (MSE) as the loss function. In addition to our
model, we used four baseline networks (one state-space and
three CNNs), which have state-of-the-art performance for
rPPG, to compare the performance of our proposed model
to the performance of these established models. Our model
was trained on a GeForce RTX 4090, with a total runtime
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of about 15 hours for all folds.

5.3.2. Metrics
To assess model accuracy, we use the mean absolute error
(MAE), root mean squared error (RMSE), mean absolute
percentage error (MAPE), and Pearson correlation (r) using
a non-overlapping 60-second sliding window, as commonly
used for rPPG [18, 48, 49, 55, 92].

5.3.3. Video sampling rate
While we recorded the eye tracking videos with
30 fps, large-scale datasets such as EgoExo4D [33] or
Nymeria [51] used only 10 fps. To assess the impact of
reduced frame rates, we evaluated i) model performance
when downsampling our videos to 10 fps by retaining only
every third frame and ii) model performance when down-
sampling to 10 fps, then linearly interpolating between
frames to upsample to 30 fps again. For both scenarios, we
train from random initialization.

5.3.4. Hyperparameter optimization
We also provide insights into optimal hyperparameter con-
figurations by analyzing the impact of image size, input
length, loss function, and choice of label (see Tab. 9).

6. Downstream use for proficiency estimation
To demonstrate the utility of predicting a user’s physio-
logical state for egocentric vision applications, we use the
user proficiency estimation benchmark from the EgoExo4D
dataset, which contains over 5000 videos from 740 partic-
ipants performing skilled human activities [33]. The user
proficiency estimation benchmark aims to classify the pro-
ficiency of a user (novice, early expert, intermediate expert,
late expert) using only egocentric video clips (Ego), only
exocentric video clips (Exo), or all video clips together (Ego

+ Exo). Our goal was to assess if we can improve the per-
formance of the current baseline model (TimeSFormer [6])
when integrating our predicted HR data into the network.
This results in two additional configurations: using egocen-
tric videos and HR together (Ego + HR), and using all video
clips and HR together (Ego + Exo + HR). To predict the
continuous HRs for all EgoExo4D videos, we use our pro-
posed method, pre-trained on egoPPG-DB.

We implement the TimeSFormer model in exactly the
same configuration as for the current benchmark results [33]
with a clip size of 16 frames and a sampling rate of 16,
trained for 15 epochs on four GeForce RTX 4090. We
use all videos of the EgoExo4D dataset, for which the pro-
ficiency estimation labels are available (using the official
benchmark training and validation sets) and which have at
least 16 frames at a sampling rate of 16, resulting in to-
tally 2044 videos. From the official training set, we use
10% as validation, and the held-out official validation set
for testing. We summarize our predicted HR data by cal-
culating five features (mean, standard deviation, minimum
and maximum HR, and mean HR change) for the corre-
sponding videos. To integrate our HR predictions into the
TimeSFormer architecture, we simply feed our calculated
features into a 50-parameter linear layer and concatenate
the output with the backbone’s output before feeding it into
the network head. We train all models from random ini-
tialization and evaluate proficiency estimation using top-1
accuracy per the EgoExo4D protocol.

7. Experiments

7.1. Heart rate estimation
7.1.1. Baseline
We employed signal processing to verify that the BVP sig-
nal is present in the eye tracking videos, to determine in
which regions the SNR is highest, and to establish a base-
line for comparison. Since the glasses remain mostly stable
throughout the recording, we manually define two spatial
cropping regions per participant. One region that includes
mostly skin, and one region that includes mainly eyes (see
Fig. 4). After spatially cropping the images, we calculate
the mean pixel intensity values and remove motion artifacts
by discarding any changes in the signal that are outside the
first and third quantiles of the signal’s changes. Finally, we
filter the signal with a 4th order Butterworth bandpass filter
between 0.6 and 3.0 Hz (corresponding to 36 to 180 bpm) to
obtain the BVP (see Fig. 6).

7.1.2. EgoPulseFormer: an egoPPG method
Using our proposed network, we obtain an MAE of
8.82 bpm and a correlation of 0.81 between our predicted
HR and the ground truth HR (see Tab. 2). This is an im-
provement of 3.27 bpm (27.0%) of the MAE and 0.15 for



Model MAE RMSE MAPE r

DeepPhys [12] 28.26 31.97 36.68 0.08
TS-CAN [48] 26.32 32.39 29.13 0.11
Mean intensity eyes 14.60 18.18 18.37 0.20
PhysMamba [90] 13.94 16.86 17.76 0.61
Mean intensity skin 12.40 15.54 15.29 0.50
PhysNet [92] 12.09 15.43 15.14 0.66
EgoPulseFormer (ours) 8.82 12.03 10.82 0.81

Improvement over
-3.27 -3.4 -4.32 +0.15second-best method

Table 2. Results for HR prediction from eye tracking videos us-
ing different models (EgoPulseFormer and established rPPG base-
lines).

the correlation compared to the second-best network (Phys-
Net [92]). Split by activity, we obtain the lowest MAE while
the participants are watching a video (MAE of 6.25 bpm)
and the highest MAE during exercising on a bike (MAE of
13.51 bpm) and while dancing (MAE of 10.02 bpm), which
are both also the tasks with the highest normalized motion
magnitude. We define the motion magnitude as the root
mean squared sum of the absolute differences across the 3-
axis IMU recorded by the Aria glasses. We, then, normalize
it between zero and one across all activities to get a measure
of the amount of motion of each activity. Furthermore, us-
ing simple signal processing and spatial cropping, we obtain
an MAE of 12.40 and a correlation of 0.50 when using the
skin region around the eyes. When using the eyes regions
as input, the MAE increases to 14.60, and the correlation
drops to 0.20. This is also reflected in spatial attention maps
that our model implicitly learns (see Fig. 4), which exclude
the eyes for predicting the HR. To qualitatively cross-check
these results, Fig. 6 shows an example plot of the raw mean
intensity values (before filtering) of the skin region com-
pared to the eye region with the BVP clearly visible for the
skin region. Tab. 4 shows the results when downsampling
our videos to 10 fps. The MAE increases to 12.40 bpm and
the correlation decreases to 0.52 when training and testing
using 10 fps. When upsampling the videos again to 30 fps
using linear interpolation, the MAE decreases to 10.20 bpm
and the correlation increases to 0.77.

7.2. Downstream task: proficiency estimation

Tab. 5 summarizes the results of our experiments to evalu-
ate the value of HR estimation for the proficiency estima-
tion benchmark on the EgoExo4D dataset. We see that inte-
grating our predicted HRs into the TimeSFormer model [6]
improved accuracy for all scenarios but one. Additionally,
we also achieved the highest accuracy for each individual
scenario with our HR integration for the same scenarios.

Activity µ HR Motion MAE RMSE MAPEmagnitude

Video 71.45 0 6.25 8.50 9.88
Office 75.65 0.45 8.90 11.97 12.60
Kitchen 85.31 0.54 8.75 11.11 10.42
Dancing 89.07 1.00 10.02 12.79 11.22
Bike 113.06 0.77 13.51 16.52 11.04
Walking 93.71 0.30 7.02 9.31 6.70

Table 3. Results for HR prediction split by activity.

Input video MAE RMSE MAPE r

10 fps (other datasets) 12.40 16.80 14.10 0.52
Upsampled to 30 fps 10.20 13.56 12.78 0.77

Table 4. Results for HR prediction with different frame rates. In
the first row, we downsample our videos to a frame rate of 10 fps,
commonly used by large-scale datasets such as EgoExo4D [33]. In
the second row, we first downsample our videos to 10 fps and then
upsample them to 30 fps by linearly interpolating between frames.

When combining the egocentric videos with our predicted
HRs, we achieved an overall accuracy of 45.20%, a 14.1%
increase compared to using egocentric videos alone. The
largest gains appeared in the cooking and dancing tasks,
where accuracy rose from 20.00% to 40.00% and from
43.44% to 53.27%, respectively. Also, when using the ego-
centric videos, exocentric videos, and our predicted HRs
together, the accuracy increased by 8.64% from 39.00% to
42.37% compared to using only the egocentric and exocen-
tric videos. Using only exocentric videos yielded the lowest
overall accuracy at 35.93%.

8. Discussion
8.1. Heart rate estimation
When evaluating our proposed method on egoPPG-DB, we
showed that HR can reliably be predicted from eye tracking
videos of unmodified egocentric vision headsets. Compared
to the performances achieved on popular rPPG datasets
such as PURE [78], UBFC-RPPG [7], and MMPD [80],
we achieved very competitive performance in challenging
settings [49]. While the lowest reported MAE for UBFC-
RPPG in the rPPG-toolbox [49] is 1.21 bpm, its participants
sit almost motion-free with their eyes closed. Already on
MMPD, a dataset with varied lighting and little motion, the
lowest reported MAE increases to 10.23 bpm [49], as it in-
corporates more realistic challenges due to recordings on
mobile devices with light motion (head rotation, talking,
and taking selfies). In comparison, using EgoPulseFormer,
we achieved a lower MAE of 8.82 bpm while even having



Scenario Majority Ego Ego + HR (ours) Exo Exo + HR (ours) Ego + Exo Ego + Exo + HR (ours)

Basketball 38.00 45.45 47.47 49.24 49.24 49.49 52.52
Cooking 0.00 20.00 40.00 33.75 40.00 25.00 40.00
Dancing 24.59 43.44 53.27 45.08 48.36 50.82 55.73
Music 57.89 78.94 81.58 57.89 57.89 57.89 60.53
Bouldering 15.29 24.50 27.81 10.26 12.58 15.89 18.54
Soccer 62.50 50.00 56.25 76.56 75.00 75.0 62.50

Overall 27.80 39.69 45.29 35.93 35.93 39.00 42.37

Table 5. Results for proficiency estimation benchmark on EgoExo4D dataset. Note that for all scenarios except Soccer, the accuracy
increases when integrating EgoPulseFormer’s heart rate estimate into the existing and otherwise unmodified baseline model.

tasks with heavy motion (dancing, walking stairs) and very
high HR changes (44–164 bpm).

8.1.1. Performance depending on activity

Analyzing our results split by activity (see Tab. 3), we see
that the tasks with the highest mean HR (bike, 113 bpm) and
motion magnitude (dancing) also have the highest MAE.
Given the substantially bigger motion artifacts and HR vari-
ability (HRs between 44 and 164 bpm) in our dataset —
captured during diverse everyday activities and physical ex-
ercises — we believe that our results demonstrate the ro-
bustness of EgoPulseFormer in more dynamic, everyday
conditions.

8.1.2. Performance depending on method

For our model, we leveraged spatial attention maps to
improve performance. When qualitatively analyzing the
learned spatial attention maps, we see that our model im-
plicitly learned to exclude the eyes for estimating the BVP
from the eye tracking videos (see Fig. 4). This aligns with
our obtained qualitative (see Fig. 6) and quantitative (see
Tab. 2) results using simple signal processing, which show a
higher SNR for the skin region compared to the eyes. When
analyzing the performance of other state-of-the-art rPPG
models on our dataset, we found that only PhysNet [92]
and PhysMamba [90] achieved reasonable performances,
though their results did not reach our performance.

8.1.3. Performance depending on camera fps

Using eye tracking videos recorded at only 10 fps consid-
erably decreases performance (see Tab. 4). However, up-
sampling the frame rate to 30 fps through linear interpo-
lation between frames substantially improves the perfor-
mance again. This is especially important as many large-
scale datasets, such as EgoExo4D [33] or Nymeria [51], for
which predicting a user’s physiological state could help for
further downstream tasks, are recorded at only 10 fps.

8.2. Benefits for proficiency estimation downstream
We found that incorporating HR data into the baseline
model of the proficiency estimation task substantially im-
proved accuracy across both configurations. The egocentric
videos combined with the HR achieved the highest over-
all accuracy at 45.29%, marking a 14.1% increase over us-
ing only egocentric videos (39.69%). Adding HR espe-
cially improved accuracy for cooking (from 20% to 40%)
and dancing (from 43.4% to 53.3%), which had the low-
est accuracies besides bouldering when using only egocen-
tric videos, demonstrating the value of HR in enhancing
model performance. Combining egocentric videos, exo-
centric videos, and HR provided further accuracy gains for
some scenarios, achieving the best results for basketball,
cooking, and dancing. Results using exocentric views alone
were lower overall, which is consistent with benchmark re-
sults [33]. These findings suggest that adding HR data as an
auxiliary signal enhances performance for the proficiency
estimation benchmark on the EgoExo4D dataset. For train-
ing and testing, we used the available subset of EgoExo4D
videos for which proficiency labels are available, following
the official training and validation splits. While our used
data shows slight variations from the official release in ma-
jority class distributions and accuracy scores, the observed
trends align well with the established benchmark results.

8.3. Limitations and future work
We observed the highest MAE in tasks with elevated HRs
and motion, such as dancing and biking. We believe that
promising approaches to address these limitations could be
to record more tasks with high HRs and integrating the IMU
data from the glasses. Furthermore, future studies could
extend data collection to outdoor settings to assess the im-
pact of varying lighting conditions. While we ensured a
balanced gender ratio (13 male, 12 female), our sample
size of 25 participants restricts broader demographic con-
clusions. In future work, we aim to expand the dataset
to investigate performance variations across different age
groups, skin types, and ethnicities. Finally, we believe that



it is a highly interesting problem to explore further down-
stream applications of a user’s physiological state, such as
personalized feedback, autonomous assistance, as well as
health-related applications.

9. Conclusion
We introduced egoPPG, a novel task for egocentric vision
systems to extract the wearer’s heart rate for integrating
their physiological state into egocentric vision tasks down-
stream. Our method EgoPulseFormer processes input from
the eye tracking cameras on unmodified egocentric vision
systems to robustly estimate the person’s HR in various ev-
eryday scenarios. We validate EgoPulseFormer’s robust-
ness on our dataset egoPPG-DB and demonstrate signifi-
cant improvements over existing rPPG models. With HR
estimations from EgoPulseFormer we significantly improve
the proficiency estimation benchmark on the large-scale
EgoExo4D dataset. Our results emphasize the potential
of physiological insights obtained via egoPPG methods for
further egocentric vision applications.
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and Mariano Alcañiz. Emotion recognition in immersive vir-
tual reality: From statistics to affective computing. Sensors,
20(18):5163, 2020. 3

[55] Daniel McDuff, Javier Hernandez, Erroll Wood, Xin Liu,
and Tadas Baltrusaitis. Advancing non-contact vital sign
measurement using synthetic avatars. arXiv preprint
arXiv:2010.12949, 2020. 6

[56] Meta. Meta quest. https://www.meta.com/quest/,
2024. Accessed: 2024.11.13. 1, 2

[57] Microsoft. Microsoft hololens. https://learn.
microsoft.com/en-us/hololens/, 2024. Ac-
cessed: 2024.11.13. 2

[58] Kyle Min and Jason J Corso. Integrating human gaze into at-
tention for egocentric activity recognition. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1069–1078, 2021. 2, 3

[59] Juan Abdon Miranda-Correa, Mojtaba Khomami Abadi,
Nicu Sebe, and Ioannis Patras. Amigos: A dataset for affect,
personality and mood research on individuals and groups.
IEEE transactions on affective computing, 12(2):479–493,
2018. 2, 3

[60] Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwon-
joon Lee. Can’t make an omelette without breaking
some eggs: Plausible action anticipation using large video-
language models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18580–18590, 2024. 2

[61] Max Moebus and Christian Holz. Personalized interpretable
prediction of perceived sleep quality: Models with meaning-
ful cardiovascular and behavioral features. Plos one, 19(7):
e0305258, 2024. 2

[62] Max Moebus, Lars Hauptmann, Nicolas Kopp, Berken
Demirel, Björn Braun, and Christian Holz. Nightbeat:
Heart rate estimation from a wrist-worn accelerometer dur-
ing sleep. IEEE Journal of Biomedical and Health Informat-
ics, 2024. 3

[63] Subhas Chandra Mukhopadhyay. Wearable sensors for hu-
man activity monitoring: A review. IEEE sensors journal,
15(3):1321–1330, 2014. 2, 3

[64] Xuesong Niu, Hu Han, Shiguang Shan, and Xilin Chen.
Vipl-hr: A multi-modal database for pulse estimation from
less-constrained face video. In Computer Vision–ACCV
2018: 14th Asian Conference on Computer Vision, Perth,
Australia, December 2–6, 2018, Revised Selected Papers,
Part V 14, pages 562–576. Springer, 2019. 3, 2

[65] Rosalind W Picard. Affective computing. MIT press, 2000.
2, 3

[66] Ming-Zher Poh, Daniel McDuff, and Rosalind W Picard.
Non-contact, automated cardiac pulse measurements using
video imaging and blind source separation. Optics express,
18(10):10762–10774, 2010. 2, 3

[67] Ivan Rodin, Antonino Furnari, Dimitrios Mavroeidis, and
Giovanni Maria Farinella. Predicting the future from first
person (egocentric) vision: A survey. Computer Vision and
Image Understanding, 211:103252, 2021. 2

[68] Antoni Rosinol, John J Leonard, and Luca Carlone. Nerf-
slam: Real-time dense monocular slam with neural radiance
fields. In 2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3437–3444. IEEE,
2023. 2

[69] Michael S Ryoo, Thomas J Fuchs, Lu Xia, Jake K Aggarwal,
and Larry Matthies. Robot-centric activity prediction from
first-person videos: What will they do to me? In Proceedings
of the tenth annual ACM/IEEE international conference on
human-robot interaction, pages 295–302, 2015. 2

[70] Rita Meziati Sabour, Yannick Benezeth, Pierre De Oliveira,
Julien Chappe, and Fan Yang. Ubfc-phys: A multimodal
database for psychophysiological studies of social stress.
IEEE Transactions on Affective Computing, 2021. 3, 2

[71] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-
based localization using direct 2d-to-3d matching. In 2011
International Conference on Computer Vision, pages 667–
674. IEEE, 2011. 2

[72] Fred Shaffer and Jay P Ginsberg. An overview of heart rate
variability metrics and norms. Frontiers in public health, 5:
258, 2017. 3

[73] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F
Fouhey. Understanding human hands in contact at inter-
net scale. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9869–9878,
2020. 2

[74] Yoli Shavit, Ron Ferens, and Yosi Keller. Learning multi-
scene absolute pose regression with transformers. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2733–2742, 2021. 2

[75] Takaaki Shiratori, Hyun Soo Park, Leonid Sigal, Yaser
Sheikh, and Jessica K Hodgins. Motion capture from body-
mounted cameras. In ACM SIGGRAPH 2011 papers, pages
1–10, 2011. 2

[76] Isabelle M Shuggi, Hyuk Oh, Helena Wu, Maria J Ay-
oub, Arianna Moreno, Emma P Shaw, Patricia A Shewokis,
and Rodolphe J Gentili. Motor performance, mental work-
load and self-efficacy dynamics during learning of reaching
movements throughout multiple practice sessions. Neuro-
science, 423:232–248, 2019. 2

[77] Mohammad Soleymani, Jeroen Lichtenauer, Thierry Pun,
and Maja Pantic. A multimodal database for affect recog-
nition and implicit tagging. IEEE transactions on affective
computing, 3(1):42–55, 2011. 2

[78] Ronny Stricker, Steffen Müller, and Horst-Michael Gross.
Non-contact video-based pulse rate measurement on a mo-
bile service robot. In The 23rd IEEE International Sym-

https://www.meta.com/quest/
https://learn.microsoft.com/en-us/hololens/
https://learn.microsoft.com/en-us/hololens/


posium on Robot and Human Interactive Communication,
pages 1056–1062, 2014. 3, 7, 2

[79] Ramanathan Subramanian, Julia Wache, Mojtaba Khomami
Abadi, Radu L Vieriu, Stefan Winkler, and Nicu Sebe. As-
certain: Emotion and personality recognition using commer-
cial sensors. IEEE Transactions on Affective Computing, 9
(2):147–160, 2016. 2, 3

[80] Jiankai Tang, Kequan Chen, Yuntao Wang, Yuanchun Shi,
Shwetak Patel, Daniel McDuff, and Xin Liu. Mmpd: multi-
domain mobile video physiology dataset. In 2023 45th
Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC), pages 1–5. IEEE,
2023. 3, 7, 2

[81] Chai M Tyng, Hafeez U Amin, Mohamad NM Saad, and
Aamir S Malik. The influences of emotion on learning and
memory. Frontiers in psychology, 8:235933, 2017. 2

[82] Wim Verkruysse, Lars O Svaasand, and J Stuart Nelson. Re-
mote plethysmographic imaging using ambient light. Optics
express, 16(26):21434–21445, 2008. 2, 3

[83] Wenjin Wang, Albertus C Den Brinker, Sander Stuijk, and
Gerard De Haan. Algorithmic principles of remote ppg.
IEEE Transactions on Biomedical Engineering, 64(7):1479–
1491, 2016. 3, 4

[84] Xin Wang, Taein Kwon, Mahdi Rad, Bowen Pan, Ishani
Chakraborty, Sean Andrist, Dan Bohus, Ashley Feniello, Bu-
gra Tekin, Felipe Vieira Frujeri, et al. Holoassist: an egocen-
tric human interaction dataset for interactive ai assistants in
the real world. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 20270–20281,
2023. 2

[85] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 5

[86] Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi
Fan, Bo Xiong, Jitendra Malik, and Christoph Feichtenhofer.
Memvit: Memory-augmented multiscale vision transformer
for efficient long-term video recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13587–13597, 2022. 2

[87] Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge
Rhodin, Pascal Fua, Hans-Peter Seidel, and Christian
Theobalt. Mo 2 cap 2: Real-time mobile 3d motion cap-
ture with a cap-mounted fisheye camera. IEEE transactions
on visualization and computer graphics, 25(5):2093–2101,
2019. 2

[88] Kentaro Yamada, Yusuke Sugano, Takahiro Okabe, Yoichi
Sato, Akihiro Sugimoto, and Kazuo Hiraki. Attention pre-
diction in egocentric video using motion and visual saliency.
In Advances in Image and Video Technology: 5th Pacific Rim
Symposium, PSIVT 2011, Gwangju, South Korea, November
20-23, 2011, Proceedings, Part I 5, pages 277–288. Springer,
2012. 2, 3

[89] Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu,
Mi Zhang, Chen Sun, and Cordelia Schmid. Multiview
transformers for video recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 3333–3343, 2022. 2

[90] Zhixin Yan, Yan Zhong, Wenjun Zhang, Lin Shu, Hongbin
Xu, and Wenxiong Kang. Physmamba: Leveraging dual-
stream cross-attention ssd for remote physiological measure-
ment. arXiv preprint arXiv:2408.01077, 2024. 2, 3, 7, 8

[91] Yu Yao, Mingze Xu, Chiho Choi, David J Crandall, Ella M
Atkins, and Behzad Dariush. Egocentric vision-based fu-
ture vehicle localization for intelligent driving assistance sys-
tems. In 2019 International Conference on Robotics and Au-
tomation (ICRA), pages 9711–9717. IEEE, 2019. 2

[92] Zitong Yu, Xiaobai Li, and Guoying Zhao. Re-
mote photoplethysmograph signal measurement from fa-
cial videos using spatio-temporal networks. arXiv preprint
arXiv:1905.02419, 2019. 2, 3, 4, 6, 7, 8

[93] Zheng Zhang, Jeff M Girard, Yue Wu, Xing Zhang, Peng
Liu, Umur Ciftci, Shaun Canavan, Michael Reale, Andy
Horowitz, Huiyuan Yang, et al. Multimodal spontaneous
emotion corpus for human behavior analysis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3438–3446, 2016. 2

[94] Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit
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10. Related datasets

Tab. 6 gives a comprehensive comparison of the dataset
size and activities of related remote photoplethysmogra-
phy (rPPG) datasets. In terms of hours of recordings and
recorded frames, egoPPG-DB is the third largest dataset.
Furthermore, we see that all comparable rPPG datasets only
include activities with very little motion and heart rate (HR)
changes such as watching videos, head rotations or talking.
In contrast, egoPPG-DB features a wide variety of challeng-
ing everyday activities, such as kitchen work, dancing rid-
ing and exercise bike, which induce significant motion arti-
facts and HR changes.

11. Excluded tasks

For all participants and activities, we checked the mean ab-
solute error (MAE) between the predicted HR from our cus-
tom contact PPG sensor on the nose and the gold standard
ECG from the chest belt. We excluded all tasks with an
MAE over 3.0 beats per minute (bpm), which can happen,
for example, when the PPG sensor loses alignment with the
angular artery due to movement. In this way, we ensured
that the photoplethysmography (PPG) signal signal from the
nose, which we used as the target signal to train our model,
is highly accurate. As a result, we had to exclude 20 out
of the 150 tasks (13%), which we list in Tab. 7. We can
see that this applied only to tasks with more motion (danc-
ing, exercise bike, and walking). Since the participants had
to walk multiple stairs throughout the data recording, this
mostly happened during walking.

12. Detailed description of activities

Tab. 8 gives a comprehensive description of the actions for
each activity during our recording. Generally, participants
were free to talk during the entire duration of the recording
and conduct the tasks as they would do it normally. For ex-
ample, during the kitchen work, the participants were com-
pletely free to prepare the sandwich and if they would like
to eat or drink while doing it.

13. Data recording

In Fig. 5, we show a variety of different images and people
of our data recording from a third person view to visualize
the apparatus and capture protocol. All participants visible
in these images explicitly agreed to be visualized.

14. Initial signal verification
In Fig. 6, we show the raw mean intensity values after spa-
tial cropping of the skin region and the eye region (see
Fig. 4) compared to the ground truth contact PPG signal
from the nose. We can clearly see that the blood vol-
ume pulse is present both in the eyes and skin region with
the skin region having a higher signal-to-noise ratio (SNR)
compared to the eyes.

15. Hyperparameter optimization
In Tab. 9, we show the results of EgoPulseFormer when
training our model with different hyperparameters such as
different image sizes, input window sizes, or target signals.



Dataset Part. Frames Hours Tasks

PURE [78] 10 110 K 1 Resting, talking, small head movements
MAHNOB-HCI [77] 27 2.6 M 12 Watching videos
MMPD [80] 33 1.2 M 11 Resting, head rotation, selfie videos
MMSE-HR [93] 40 310 K 2 Talking, watching videos, experiencing different emotions
UBFC-rPPG [7] 43 150 K 1.5 Gaming on a computer
UBFC-PHYS [70] 56 2.4 M 19 Resting, Trier Social Stress Test
VIPL-HR [64] 107 4.3 M 20 Resting, talking, head rotation, different lighting conditions

egoPPG-DB (ours) 25 1.4 M 13 Watching videos, office and kitchen work, dancing, biking, walking

Table 6. Summary of existing datasets for rPPG.

desk
activities

walking
activities

moderate
exercise

kitchen
activities

Figure 5. Additional images of the data recording showing the variety of everyday activities our dataset includes.

Activity Excluded participants

Watch video —
Office work —
Kitchen work —
Dancing 012, 015
Exercise bike 009, 012, 014, 015, 016, 023
Walking 004, 012, 013, 014, 018, 021, 022

Table 7. Detailed table of all excluded tasks.



Activity Actions Description

Watch video Watch a documentary Watch a relaxing documentary on a computer.

Office work
Work on a computer Randomly browse through websites and type text from a PDF into Word.
Write on a paper Write a text from a PDF on a computer onto a piece of paper.
Talk to the experimenter Have a free, unscripted conversation with the experimenter.

Walking Walk to the kitchen Walk along a hallway, down the stairs into the kitchen.

Kitchen work

Get ingredients Get all ingredients for a sandwich from the fridge.
Cut vegetables Get a cutting board, knife and a plate and cut vegetables.
Prepare a sandwich Put the bread into the toaster and afterward freely prepare sandwich.
Eat sandwich/drink Participants are free to eat the sandwich or drink during the recording.
Wash the dishes Wash everything used while preparing the sandwich.

Walking Walk to the dancing room Walking along a hallway into a new room for dancing and biking.

Dancing Follow random dance video Choose a dance video and afterward follow it.

Exercise bike Ride an exercise bike Ride an exercise bike with moderate to high intensity.

Walking Walk back to the start Walk back to the start either up the stairs or using the elevator.

Table 8. Detailed capture protocol and action descriptions of the egoPPG-DB dataset.

Hyperparameter Configuration MAE RMSE MAPE r

Image preprocessing

Raw 16.33 20.04 20.93 0.31
Standardized 14.44 18.21 18.66 0.46
Difference 8.99 12.09 10.96 0.80
Standardized difference 8.82 12.03 10.82 0.81

Image size
24× 64 9.73 12.69 12.12 0.77
48 × 128 8.82 12.03 10.82 0.81
96× 256 10.27 13.10 12.46 0.79

Window size
64 9.95 12.82 11.93 0.80
128 8.82 12.03 10.82 0.81
256 9.71 13.02 11.41 0.78

Loss function
Negative Pearson [92] 10.62 13.57 13.16 0.81
MAE 9.71 13.02 11.41 0.78
MSE 8.82 12.03 10.82 0.81

Target signal Heart rate 10.99 14.03 13.49 0.77
Nose PPG 8.82 12.03 10.82 0.81

Augmentation Without 10.57 14.19 12.78 0.70
With 8.82 12.03 10.82 0.81

Table 9. Results of our model on the egoPPG-DB dataset when training with different hyperparameters.



b
lo

o
d

 v
o

lu
m

e
 p

u
ls

e
 [ 

]

time [s]
654321

0

0.5

1

ground truth nose PPG
skin region mean intensity
eye region mean intensity

Figure 6. Example raw mean intensity of the skin and eye region,
showing the higher SNR for the skin region around the eyes com-
pared to the eyes.


	Introduction
	Related work
	Overview
	egoPPG-DB
	Recruiting and recording
	Apparatus
	Capture protocol
	Dataset and signal quality verification

	EgoPulseFormer: a first method for egoPPG
	Problem definition
	Deep learning model
	Experiments setup
	Training
	Metrics
	Video sampling rate
	Hyperparameter optimization


	Downstream use for proficiency estimation
	Experiments
	Heart rate estimation
	Baseline
	EgoPulseFormer: an egoPPG method

	Downstream task: proficiency estimation

	Discussion
	Heart rate estimation
	Performance depending on activity
	Performance depending on method
	Performance depending on camera fps

	Benefits for proficiency estimation downstream
	Limitations and future work

	Conclusion
	Related datasets
	Excluded tasks
	Detailed description of activities
	Data recording
	Initial signal verification
	Hyperparameter optimization

