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Abstract

Remote camera measurement of the blood volume pulse

via photoplethysmography (rPPG) is a compelling technol-

ogy for scalable, low-cost, and accessible assessment of

cardiovascular information. Neural networks currently pro-

vide the state-of-the-art for this task and supervised training

or fine-tuning is an important step in creating these models.

However, most current models are trained on facial videos

using contact PPG measurements from the fingertip as tar-

gets/labels. One of the reasons for this is that few public

datasets to date have incorporated contact PPG measure-

ments from the face. Yet there is copious evidence that the

PPG signals at different sites on the body have very dif-

ferent morphological features. Is training a facial video

rPPG model using contact measurements from another site

on the body suboptimal? Using a recently released unique

dataset with synchronized contact PPG and video measure-

ments from both the hand and face, we can provide precise

and quantitative answers to this question. We obtain up to

40% lower mean squared errors between the waveforms of

the predicted and the ground truth PPG signals using state-

of-the-art neural models when using PPG signals from the

forehead compared to using PPG signals from the finger-

tip. We also show qualitatively that the neural models learn

to predict the morphology of the ground truth PPG signal

better when trained on the forehead PPG signals. How-

ever, while models trained from the forehead PPG produce

a more faithful waveform, models trained from a finger PPG

do still learn the dominant frequency (i.e., the heart rate)

well.

1. Introduction

Camera measurement of photoplethysmography (PPG), or

remote PPG (rPPG), is compelling as it opens the door for

scalable, low-cost, and comfortable passive measurement

of cardiovascular information [20] such as the blood vol-

ume pulse (BVP) waveform [2, 34, 36]. The PPG signal

contains various vital pieces of information about the phys-

iological state of a subject, most notably pulse rate [27],

but also respiration rate [26] and blood pressure corre-

lates [4, 8, 14, 28].

Neural models can be trained to create a mapping be-

tween pixels in a video and the BVP [7, 31]. While unsu-

pervised learning is a popular choice [11, 38], these models

still usually need supervised fine-tuning to achieve state-of-

the-art performance. The best models are currently trained

using deep neural networks with relatively large numbers of

parameters that can learn high-dimensional, complex map-

pings between pixel values over time and the pulse wave-

form. Almost exclusively, these supervised rPPG models

are trained using target measurements from a finger tip PPG

sensor and videos of peoples’ faces. However, it has not

yet been evaluated how the location of the ground truth

PPG sensor influences the performance of these supervised

rPPG models. PPG signals vary significantly in morphology

and phase (due to differences in pulse arrival time (PAT))

across the body [12, 13, 23, 24] (see Fig. 1). Therefore,

the performance of the trained neural methods for rPPG

measurement likely exhibits location-dependent variations,

given the substantial differences in PPG signal characteris-

tics across body sites.

More generally in machine learning tasks reducing the

domain gap between the target signal and the labels is ad-

vantageous. By requiring the model to extract a PPG signal
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Figure 1. What is the Optimal Target for rPPG? Most rPPG

models are trained with PPG targets from the finger tip; however,

waveform morphology differs in phase and morphology at differ-

ent sites across the body. We show that using finger tip PPG targets

is less optimal than using PPG measured from the face.

from face pixels and then map the facial PPG morphology

to that from the finger we are making the learning task more

difficult. Yet, very little prior work has considered the im-

pact of this choice.

In this paper, we present a comprehensive study evalu-

ating the performance of three commonly employed rPPG

models — DeepPhys [7], TS-CAN [18], and PhysNet [39]

— when trained using PPG signals from two different body

locations: the forehead and the finger. Our findings reveal

that the waveform prediction performance of these networks

can be improved substantially when using PPG signals from

the forehead compared to those from the finger when the

models are trained with videos from the face. The mean

squared error (MSE) between the predicted and the refer-

ence contact PPG signals is improved by up to 40% when

training and testing with the forehead PPG signal compared

to using the finger PPG signal. In addition, we qualitatively

compare the predicted waveforms and see that we achieve

a better temporal alignment and preservation of morpho-

logical characteristics training and testing on the forehead

PPG signal. We hypothesize that this improvement is at-

tributed to the smaller domain gap when using videos from

the face as input and labels from the face, compared to us-

ing labels from the finger. We believe that these insights

into location-dependent variations will foster advancements

in rPPG research, enabling the development of more accu-

rate and robust models for physiological signal estimation

and will help inform the design of future data collections.

2. Related work

2.1. Camera­based Physiological Measurements

The field of remote photoplethysmography (rPPG) has wit-

nessed significant advancements in recent years. By lever-

aging video cameras, such as regular webcams or smart-

phone cameras, rPPG enables non-contact estimation of

physiological signals, such as heart rate and blood vol-

ume changes [20]. By analyzing light absorption variations

caused by blood flow changes, rPPG enables convenient vi-

tal sign assessment from optical measurements of the skin

without physical sensor contact [2, 27, 34, 36]. In compar-

ison to traditional wearable sensors such as smartwatches,

this method offers increased comfortability for the user and

the potential for easier scalability.

Originally, unsupervised signal processing approaches

such as blind source separation [27] or mathematical mod-

els of the skin properties [37] were used to estimate the

rPPG signal. Improvements have been achieved using deep

learning approaches that can model more complex spatial-

temporal. Examples of networks specifically designed

for rPPG include DeepPhys [7], TS-CAN [18] and Phys-

Net [39]. These networks are typically trained on videos of

peoples’ faces as the skin is least likely to be obscured by

clothing at that location. Furthermore, it is not only pos-

sible to estimate the BVP remotely, but also other physio-

logical vitals such as blood pressure [4, 14], respiratory rate

(RR) [18, 35], electrodermal activity correlates [1, 29], or

sympathetic arousal [6, 21]. Blood pressure estimation via

pulse wave analysis (PWA) use features about the shape (or

morphology) of the PPG signal and therefore it is important

that waveform does not only capture the pulse frequency but

also resembles the ground truth PPG in order, more subtle

ways.

2.2. PPG Signal Source

While state-of-the-art neural models have achieved the

best performance, most of the neural models were trained

on similar datasets such as PURE [33], UBFC-rPPG [3],

UBFC-Phys [22], AFRL [9], MMSE-HR [41], or VIPL-

HR [25], which all collect the ground truth PPG signals

from the finger or the wrist using reflective, contact PPG

sensors. To the best of our knowledge, none of these

datasets have ground truth PPG signals obtained from sites

on the face, such as the forehead.

Previous works have analyzed how the PPG signals

collected from different sites of the body differ. Nils-

son et al. [23] compared PPG signals from five different

locations (forearm, finger, forehead, wrist, and shoulder)

to evaluate the spectral power of the pulse and respira-

tion components. They found that the finger has signifi-

cantly lower respiration spectral power than the forehead

but higher pulse spectral power than the forehead. Kim et al.
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found that the region on the face, from which rPPG is pre-

dicted, influences the rPPG accuracy. As the skin thickness

is not the same at different locations on the body, the absorp-

tion properties of the skin change, influencing the specular

reflections of the light.

It has, however, not yet been evaluated how the location

of the ground truth PPG signal influences the performance

of supervised rPPG neural models. As the morphological

features and pulse spectral power of the PPG signals are

inherently different at different body sites, we hypothesize

that these characteristics also influence the performance of

the trained neural models.

3. Methods

3.1. Data

We use a dataset of N = 18 participants (4 female, 14 male,

ages 19–36, µ = 27.1 and σ = 3.7) for our experiments [6].

The unique aspect of this dataset is the synchronized collec-

tion of contact PPG and video measurement from both the

hand and face. We show the study setup in Figure 2. These

data are also released publicly for future research.

Based on the Fitzpatrick scale [10], 3 participants had

skin type II, 9 skin type III, 3 skin type V, and 2 skin

type VI. The dataset captures 9.5 minutes of video record-

ing (with disabled white balancing, auto-focus, and auto-

exposure) of participants’ faces and hands, with synchro-

nized EDA and PPG recordings from their fingers. We

recorded the videos using two Basler acA1300-200uc cam-

eras with a recording frame rate of 100 Hz and the physi-

ological signals from a synchronized Shimmer3 GSR+ de-

vice and a BIOPAC MP160 that triggered the cameras. The

Shimmer 3 GSR+ device recorded with a sampling fre-

quency of 100 Hz and the BIOPAC MP160 with a sampling

frequency of 2000 Hz. The participant placed their head on

a chin rest to minimize motion artifacts, and the lighting

and temperature in the room was kept constant throughout

the study to minimize any other confounders. The protocol

alternated between periods of resting (2 minutes) and peri-

ods of physical stress during which the participants pinched

their skin (self-pinching) (30 seconds) to stimulate an EDA

response, starting with a period of rest.

3.2. Task Description

The goal of our evaluation is to determine whether super-

vised neural models, which estimate a person’s rPPG signal,

achieve better performance when trained with contact PPG

signals from the forehead than with PPG signals from the

finger as ground truth labels. Input into our models is the

differences between the standardized camera images from

our used dataset (downsampled to 25 Hz, 72 x 72). We train

our method in a supervised setting using the differences of

the contact ground truth PPG signals from the forehead and

Figure 2. Experimental Apparatus. We used a customarily de-

signed data collection apparatus that simultaneously collects con-

tact reflectance PPG measurements from the face (forehead) (a)

and finger (b) synchronized with video recordings of the face.

finger as labels.

3.3. Implementation

To highlight how the results generalize, we performed ex-

periments with three popular neural models (DeepPhys [7],

TS-CAN [18], PhysNet [39]). For the experiments, we used

the open-source rPPG Toolbox [19]. By using a public

dataset and the open toolbox, we ensure that our results are

easily reproducible.

3.3.1 Processing Pipeline

We process the camera images from the dataset in four

steps. First, we crop the camera images to only include the

forehead using a fixed bounding box as described by [6]. As
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the heads’ of the study participants of our used dataset are

fixed on a chin rest, no dynamic detection of the forehead is

necessary. In the second step, we resize the images to a res-

olution of 72x72. Then, we downsample the frame rate of

the videos to a sampling frequency of 25 Hz, which is high

enough to capture the typical frequency band of the heart

rate (0.7–2.5 Hz [18, 32]). Finally, we take the consecu-

tive difference between the frames and standardize them by

dividing them through the standard deviation of the pixel

intensity values as it was proposed by Chen and McDuff [7]

and originally used for the DeepPhys [7] and TS-CAN [18]

models. Because we used a frame rate of 25 Hz and the stan-

dardized frame difference as an input into our neural model,

we also use a sampling rate of 25 Hz and the differences of

the PPG signals from the forehead and finger as labels for

our models. As the Shimmer GSR3+ device inherently fil-

ters out very low-frequent components of the rPPG signal,

we filter the PPG signal from the BIOPAC device with a 2nd

order Butterworth high pass filter with a cutoff frequency of

0.7 Hz to allow for a fair comparison of both signals.

3.3.2 Training

Our model training employs the LOSO cross-validation

strategy across all 18 participants to ensure robust evalua-

tion across subjects. In each iteration, we reserve one par-

ticipant as the test set, another as the validation set, and uti-

lize the remaining participants for training. We train for 30

epochs until the convergence of the validation loss and set

the batch size to 4 with an input window size of 256 frames.

During training, we shuffle the order of the input windows

randomly to ensure that the model cannot learn any possi-

ble underlying patterns. As the loss function, we use the

mean squared error (MSE) loss for all models. We optimize

the network using the Adam optimizer with hyperparame-

ters β1 = 0.9, β2 = 0.999 [16] and a learning rate of 0.001,

dynamically adjusted using the OneCycle learning rate pol-

icy [30]. To train the model, we use an NVIDIA GeForce

RTX 4090 GPU, with a total runtime of four to nine hours

(depending on the model) for all 18 participants using the

LOSO cross-validation approach.

3.3.3 Evaluation

First, we take the cumulative sum of the predicted signals

and the labels as we use the consecutive differences of the

inputs/ labels during training. We evaluate our predicted

rPPG signals using the mean squared error (MSE) between

the waveforms of the predicted and the ground truth sig-

nal. This allows us to evaluate how accurately the network

learned to predict the actual waveform of the ground truth

PPG signal. Before calculating the MSE, we normalize the

predicted and ground truth signals between zero and one to

allow for a fair comparison. In addition, we also qualita-

tively compare the the predicted and ground truth PPG sig-

nals from the forehead and the finger to analyze the model

performance. Furthermore, to ensure that our trained mod-

els achieve state-of-the-art performance, we also calculate

the mean absolute error (MAE) of the heart rate as this is

the most commonly used metric in literature to compare the

performance of trained rPPG models. We report it for the

scenario of training and testing using the face PPG as a ref-

erence. We obtain the MAE by evaluating the heart rates

with the same 30-second sliding window approach with no

overlap as explained in the rPPG toolbox [19]. First, we fil-

ter our predicted signals with a 2nd order Butterworth band

pass filter with cutoff frequencies at 0.75 and 2.5 Hz (corre-

sponding to 45 to 150 beats-per-minute) as used in previous

work [18]. Afterward, we calculate the heart rate for each

sliding window by taking the frequency with the highest

spectral power obtained from the Fast Fourier transform.

4. Results

4.1. Quantitative Analysis

Table 1 (and Figure 3) show the mean squared error (MSE)

between the labels (forehead/ finger PPG signal) and rPPG

signals (forehead/ hand videos) for the four scenarios of

training and testing with the face and finger PPG signals as

targets. The lowest MSE for all three models across all par-

ticipants was obtained when training and testing using the

PPG signal from the forehead with MSEs between 0.038

and 0.082 compared to MSEs of 0.057 to 0.129 when train-

ing and testing using the finger PPG sensor. When training

with the finger PPG signals and testing with the forehead

PPG signals, we obtain MSEs, which are in between the

MSEs of only using the forehead/ finger PPG signals. The

worst results are achieved when training with the PPG sig-

nal from the forehead and testing on the finger PPG signals

with an MSE of up to 0.175 across all participants.

In Table 2, we report the associated mean absolute er-

ror (MAE) in heart rate estimation from the rPPG wave-

forms when training and testing using the PPG signals from

the forehead and when training with the forehead PPG and

testing with the finger PPG. We achieve MAEs between

2.36 (PhysNet) and 3.04 (DeepPhys) beats per minute when

training and testing on the forehead. When training on the

forehead PPG and testing on the finger PPG, we achieve

even lower MAEs between 1.26 (PhysNet) and 2.06 (Deep-

Phys). Both results are comparable to benchmarks on other

datasets for the used neural models [19].

4.2. Qualitative Analysis

Figure 4 shows qualitative examples of the predicted and

ground truth PPG signals under the four different training

scenarios. When training exclusively on facial PPG signals,
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Network Train Face/ Test Face Train Finger/ Test Finger Train Finger/ Test Face Train Face/ Test Finger

DeepPhys [7] 0.078 0.129 0.102 0.129

TS-CAN [18] 0.082 0.126 0.103 0.138

PhysNet [39] 0.038 0.057 0.141 0.175

Table 1. Test Loss on Waveform Predictions. Mean squared error (MSE) between the predicted PPG waveforms and reference contact

sensor measurements. Lower = Better

Network Train Face/ Test Face Train Face/ Test Finger

DeepPhys [7] 3.04 2.06

TS-CAN [18] 2.79 1.74

PhysNet [39] 2.36 1.26

Table 2. Test Loss for Heart Rate Prediction. Mean absolute error (MAE) between the calculated heart rates from the predicted PPG

signals and reference contact sensor measurements. MAE Lower = Better
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Figure 3. Test Loss on Waveform Predictions. Mean squared

error (MSE) between the predicted PPG waveforms and reference

contact sensor measurements. Error bars show the standard devia-

tion across subjects. MSE Lower = Better

our neural models achieve the best results, accurately cap-

turing both the temporal dynamics and morphology of the

ground truth contact PPG signals. This is best reflected

when testing on facial PPG. However, when using only

finger PPG, the models struggle to accurately predict the

temporal dynamics and morphology of the reference signal.

While the underlying frequency of the heart rate seems to be

represented correctly, the models are not capable of learn-

ing the morphology of the finger PPG signal. Especially

noteworthy is also the temporal shift between the predicted

and the contact reference signal when training on the face

and testing on the finger. The predicted signal trained on

the face video is consistently slightly earlier than the refer-

ence PPG signal from the finger. Generally, we can clearly

see how the neural models adapt the morphology of the pre-

dicted signal to the waveform of the training reference sig-

nal.

5. Discussion

5.1. Influence of PPG Site on Training Performance

In our analysis, we found quantitatively and qualitatively

that the performance of neural models can be improved

when training with PPG signals from the forehead com-

pared to using PPG signals from the fingertip. The mean

squared error between the waveforms of the predicted and

reference contact PPG signals decreases up to 40% when

using the PPG signals from the forehead compared to using

the PPG signals from the fingertip. As we see in the qual-

itative analysis, this has two main reasons, which are both

likely caused by the larger domain gap between the input

videos of the face and the finger PPG signal compared to

the forehead PPG signal.

First, the neural models learn to better predict the mor-

phological characteristics of the PPG waveform derived

from the PPG sensor on the forehead than the PPG sen-

sor on the finger. The neural model only has videos of the

face as input and can, therefore, directly learn the morpho-

logical characteristics of the forehead PPG waveform. In

contrast, for the finger PPG signal, the neural model ad-

ditionally needs to learn to map the predicted PPG signal

waveform from the forehead to the waveform of the PPG

signal from the finger. This introduces an additional layer

of complexity to the learning process.

As related work has shown, the pulse waves arrive at dif-

ferent times at different locations on the body [14, 24]. At

the forehead, the pulse wave typically arrives earlier than on

the finger. Therefore, the neural models also need to learn to

map the temporal difference between the pulse arrival in the
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Participant: A      Model: DeepPhys

Participant: B      Model: PhysNet

Figure 4. Waveform Examples from Two Participants. Contact sensor (gray) and rPPG predictions (red) for test data from two partic-

ipants using the DeepPhys model (top) trained on finger and tested on face, (second top) trained on face and tested on finger, (third top)

trained on finger and tested on face, (fourth top) trained on face and tested on face.

videos of the face to the pulse arrival compared to the finger

PPG sensors. In Figure 4 there is a significant difference

between the outputs of DeepPhys and PhysNet. We suspect

that learning phase shifts in the temporal signal is particu-

larly challenging for a model like DeepPhys that does not

model a time component. Whereas for PhysNet the model

is able to learn better waveforms; however, the morphology

of the generated waveforms are considerably different from

the reference contact measurements.

These results highlight the advantages of using the PPG

signal from the same location of the body where the input

is obtained from and that the impact of this choice might

be different for differnt types of neural models. By mini-

mizing the domain gap between the inputs (forehead/ hand

videos) and the labels (forehead/ finger PPG signals), we

show that the performance of state-of-the-art neural models

is improved to accurately estimate rPPG signals from videos

of the face. These results can be especially relevant for tasks
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downstream of the rPPG signals, such as pulse wave anal-

ysis based prediction of blood pressure [4, 14]. While re-

motely predicting blood pressure is still unsolved, the main

two approaches at the moment are to either calculate the

pulse transit time (PTT) between two different body loca-

tions from the rPPG signals or to exploit the morphological

characteristics of the predicted rPPG signal. For both ap-

proaches, it is essential that the predicted rPPG signals ac-

curately represent the morphological characteristics of the

reference PPG signal and have a time shift/phase offset that

is as small as possible.

5.2. Evaluating rPPG Predictions

When looking at the performance evaluation of related work

on rPPG estimation, we notice that most research (for ex-

ample [7, 17, 18, 39, 40]) report heart rate metrics (such as

the MAE or RMSE). We believe that this could be mask-

ing the reality that the models do not produce very faithful

wavefrom morphology.

Furthermore, we think that our results point toward why

unsupervised methods have performed so well. Our results

show that the ground truth PPG signals from the finger is

not optimal for training supervised methods. To improve

the performance and to allow for a better comparison of the

performance of supervised models, we make two sugges-

tions. Using PPG signals from the face in the future and

also evaluating the model performances using the MSE be-

tween the predicted signal and the reference contact PPG

signal. In this way, we can prevent models from only pre-

dicting signals with the correct frequency component of the

heart rate but the wrong morphology. This will be espe-

cially relevant for future downstream tasks, such as predict-

ing blood pressure, in which morphological characteristics

of the predicted rPPG signals are of great importance.

5.3. Limitations

We see two main limitations of our evaluation in the used

dataset. First, when testing our trained neural models on the

finger PPG, we see that the MSE is considerably higher and

the qualitative comparison worse compared to testing on the

face PPG. However, we cannot determine with certainty if

this is only caused by the domain gap between our input

signal (video of the face) and the reference signal (PPG sig-

nal from the fingertip). It is also possible that this is a result

of the inherently different waveform of the finger PPG sig-

nal (more high-frequency variations), which might be more

difficult to learn for the neural models.

Second, the dataset size is rather small with N = 18

participants, has a rather low diversity in skin types, and

only includes people between the ages of 19 and 36. There-

fore, we cannot reliably analyze how our results generalize

to different skin types or people of different ages. As the

skin thickness decreases when aging, this could impact the

generalizability of our results [5]. Furthermore, the dataset

only has reference contact PPG recordings from the fore-

head and the fingertip. With the popularity of wearable

devices like smartwatches in recent years, it would have

also been interesting to analyze how the PPG waveforms

from the wrist differ from the fingertip and face, and how

they influence the performance of the trained neural mod-

els. This is especially interesting as some publically avail-

able datasets, such as the UBFC-Phys dataset [22], use a

smartwatch (Empatica E4) to record the reference contact

PPG signals from the wrist. Additionally, the used dataset

only has one task (self-pinching) and minimizes the motion

of the participants’ faces by placing the participants’ heads

on a chin rest. Therefore, we can also not evaluate how

the results generalize to different tasks that, for example,

include more motion.

6. Conclusion

In this study, we investigated how the performance of dif-

ferent state-of-the-art neural models for rPPG estimation is

influenced when training with PPG signals obtained from

two different body sites, the forehead, and the commonly

used fingertip. Our analysis reveals that a significant im-

provement is achieved when utilizing the PPG signal from

the forehead as the ground truth during training compared

to using the PPG signal from the fingertip. We decrease

the MSE between the waveforms of the predicted and the

ground truth PPG signals by up to 40% when using the PPG

signal from the forehead compared to the fingertip. We also

show qualitatively that the neural models learn the morpho-

logical characteristics from the forehead PPG signals better

than from the finger PPG signals as we decrease the domain

gap between the input and labels.

These results show the importance of considering the

placement of the reference contact PPG sensor when de-

signing user studies for rPPG prediction. Currently, the vast

majority of publicly available datasets use contact PPG sig-

nals obtained from the fingertip or the wrist. We hope that

in the future, researchers could achieve more accurate phys-

iological signal estimation by leveraging PPG signals from

the same location as the input videos, paving the way for

improved health monitoring.
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